Thiele's Ester as a Reagent in Organic Synthesis. Preparation of Pentacyclo[5.4.0.0^{2,5}.0^{3,10}.0^{4,8}]undecane10-carboxylic Acid

Alan P. Marchand*, Dalian Zhao, Teng-Ko Ngooi, and V. Vidyasagar

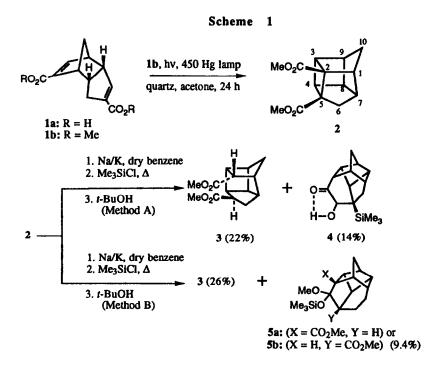
Department of Chemistry, University of North Texas
Denton, Texas 76203-0058

William H. Watson* and Ram P. Kashyap

Department of Chemistry, Texas Christian University Fort Worth, Texas 76129

(Received in USA 27 January 1993)

Abstract. Succinyl cleavage of the C(2)-C(5) σ -bond in dimethyl pentacyclo[5.3.0-.0²,5.0³,9.0⁴,8]decane-2,5-dicarboxylate, 2, afforded a tetracyclic diester, 3 (22-26%), along with two minor reaction products (4 and 5). Dieckmann condensation of 3 produced a mixture of 6a and 6b (67%). Wolff-Kishner reduction of the mixture of 6a and 6b thereby obtained afforded a mixture of products from which the title compound, 7b, could be isolated in 63% yield by fractional recrystallization. The structures of 3, 4 and 7b were established unequivocally via X-ray crystallographic methods.


Introduction. At the turn of the century, Thiele¹ reported that carbonation of cyclopentadienylpotassium results in formation of a dimeric material, C₁₄H₁₆O₄, mp 210 °C, which subsequently became known as "Thiele's acid" (1a). Acid promoted esterification of 1a with methanol affords the corresponding dimethyl ester ("Thiele's ester, 1b, mp 85 °C). The structure of 1b has been established by chemical² and by NMR spectroscopic³ methods.

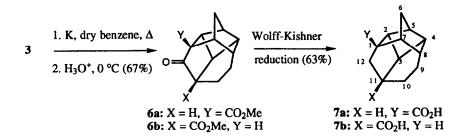
Compound 1b, a difunctionalized endo-tricyclo[5.2.1.0^{2,6}]tricycloundecane-3,8-diene, is potentially useful as a starting material for the synthesis of novel polycyclic systems. However, this compound has received relatively little attention in this regard.⁴ In the present study, we have utilized 1b to gain synthetic entry into the pentacyclo[5.4.0.0^{2,5}.0^{3,10}.0^{4,8}]undecane ring system. To our know-

ledge. neither the parent hydrocarbon nor any functionalized derivative of this ring system has been reported previously.⁵

Results and Discussion. Thiele's ester has been reported² to undergo facile intramolecular [2 + 2] cyclization when a solution of this compound in acetone is irradiated in a quartz immersion photolysis apparatus by using a 450 W medium pressure Hg lamp. This procedure affords the corresponding pentacyclic cage diester (i.e., dimethyl pentacyclo[5.3.0.0^{2,5}.0^{3,9}.0^{4,8}]decane-2,5-dicarboxylate, 2, Scheme 1) in 66% yield. Our approach to the synthesis of a substituted pentacyclo[5.4.0.0^{2,5}.0^{3,10}.0^{4,8}]undecane takes advantage of the fact that the strained C(2)-C(3) σ -bond contained within the succinyl ester moiety [comprised of MeO₂C-C(2)-C(5)-CO₂Me] in 2 can be cleaved selectively by using Na-K alloy in the presence of Me₃SiCl.⁶

In our hands, Na-K promoted reduction of 2, performed by using two very similar procedures (Methods A and B, see the Experimental Section), resulted in the desired cleavage of the C(2)-C(5) bond, thereby affording 3 as the major reaction product (Scheme 1). Fractional recrystallization of the material thereby obtained from EtOAc-hexane afforded isomerically pure 3. The results of single crystal X-ray structural analysis revealed that both the C(2)-CO₂Me and C(5)-CO₂Me bonds in 3 are endo.

When the reduction of 2 was performed by using Method A, a minor product, 4, was obtained in addition to 3. The structure of 4 was established unequivocally via single crystal X-ray crystallographic analysis. A plausible mechanism which accounts for the formation of 4 is shown in Scheme 2. It seems likely that the C(11)-Si bond in 4 results via selective base promoted deprotonation at C(5) in 3, followed by capture of the resulting enolate anion by Me₃SiCl. Subsequent acyloin condensation⁷ between the endo CO₂Me moieties in the intermediate C-silylated compound followed by hydrolysis leads to the formation of 4.


Scheme 2

When 2 was reduced by using the procedure described in Method B, a minor product, 5, was obtained in addition to 3. Possible structures for 5 (i.e., 5a and 5b, Scheme 1) are suggested on the basis of analysis of its 1 H and 13 C NMR spectra and on mechanistic grounds. Thus, the 1 H NMR spectrum of 5 reveals the presence of a SiMe3 group (δ 1.17, s, 9 H) along with two singlets, δ 3.13 (area 3 H) and 3.61 (area 3H), which correspond to two nonequivalent OCH3 moieties. In addition, the 13 C NMR spectrum of 5 displays an absorbance at δ 110.0 (s), which corresponds to a quaternary carbon atom of the type RR'C(OR)(OR'). It should be

noted that Dieckmann condensation of 3 might occur via either of two pathways. Subsequent trapping of the intermediate alkoxide anions by Me₃SiCl would be expected to afford either 5a or 5b. We are unable to further differentiate between structures 5a and 5b on the basis of available spectral data.

Subsequent treatment of 3 with metallic K resulted in Dieckmann condensation, thereby affording a mixture of two cage β -ketoesters, 6a and 6b (67%, Scheme 3). Finally, Wolff-Kishner reduction⁸ of this mixture of 6a and 6b afforded a mixture of two cage carboxylic acids, 7a and 7b. Fractional recrystallization of the product mixture from hexane afforded the title compound, 7b, in 63% yield. The structure of 7b was established unequivocally via single crystal X-ray structural analysis.

Scheme 3

Summary and Conclusions. Succinyl cleavage of the C(2)-C(5) σ -bond in dimethyl pentacyclo[5.3.0.0^{2,5}.0^{3,9}.0^{4,8}]decane-2,5-dicarboxylate, **2**, afforded a tetracyclic diester, **3** (22-26%), along with two minor reaction products (**4** and **5**, Scheme 1). Dieckmann condensation of **3** produced a mixture of **6a** and **6b** (67%), which subsequently could be converted to a mixture of **7a** and **7b** via Wolff-Kishner reduction. Fractional recrystallization of this product mixture from hexane afforded isomerically pure **7b** (63%). To our knowledge, the foregoing reaction sequence constitutes the first successful synthesis of a substituted pentacyclo-[5.4.0.0^{2,5}.0^{3,10}.0^{4,8}]undecane.

Experimental Section

Melting points are uncorrected. Compound 2 was prepared via intramolecular photocyclization of 1b¹ by using the method described by Dunn and Donohue.² High-resolution mass spectra were obtained by personnel at the Midwest Center for Mass Spectrometry, Department of Chemistry, University of Nebraska, Lincoln, NE 68588.

Dimethyl Tetracyclo[5,3,0,0^{3,9},0^{4,8}|decane-endo-2,endo-5-dicarboxylate (3). Method A. Freshly cut Na (800 mg, 22.6 mg-atom) was placed under nitrogen into a flame-dried 500 mL three-neck round bottom flask that had been fitted with a reflux condenser. One of the necks of the reaction vessel was fitted with a rubber septum. Dry toluene (100 mL) was added, and the mixture was heated with vigorous stirring under nitrogen until the Na had become finely dispersed. The mixture then was cooled to room temperature, and the toluene was decanted and was replaced by dry benzene (250 mL). Freshly cut metallic K (4.00 g, 103 mg-atom) was added, and the resulting mixture was heated with vigorous stirring under nitrogen until the Na-K alloy had become finely dispersed. The mixture was cooled to room temperature, and two additional reactants, (i) a solution of 22 (6.94 g, 28 mmol) in benzene (50 mL) and (ii) Me₃SiCl (25 mL, excess), were injected sequentially into the reaction vessel. The resulting mixture was refluxed under nitrogen with stirring for 16 h and then was allowed to cool to room temperature. The reaction mixture was filtered under nitrogen to remove unreacted Na-K alloy, and t-BuOH (30 mL) was added to the filtrate. The resulting solution was concentrated in vacuo, thereby affording a viscous yellow oil (6.66 g). This material was purified via column chromatography on silica gel by using a 1-4% EtOAc-hexane gradient elution scheme. The first chromatography fraction thereby obtained was concentrated in vacuo, and the residue was recrystallized from EtOAc-hexane. Pure 4 (1.03 g, 14%) was thereby obtained as a colorless microcrystalline solid: mp 175-176 °C; IR (KBr) 3468 (s), 2956 (br, s), 1695 (s), 1260 (s), 1130 (s), 853 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 0.02 (s, 9 H), 1.45-1.75 (m, 4 H), 2.50-1.70 (m, 5 H), 2.77 (t, J = 6.0 Hz, 1 H), 2.93 (t, J = 2.5 H, 1 H), 3.59 (d, J = 2.5 Hz, 1 H), 4.04 (br s, 1 H), 13 C NMR (CDCl₃) δ -3.59 (q), 32.47 (s), 32.86 (t), 34.07 (d), 39.80 (d), 42.13 (t), 43.95 (d), 47.23 (d), 48.03 (d), 49.14 (d), 54.22 (d), 77.89 (d), 214.1 (s); mass spectrum, m/e (relative intensity) 282 (molecular ion, 6.7), 247 (3.9), 196 (16.4), 195 (15.3), 181 (11.7), 190 (12.7), 179 (46.7), 172 (10.9), 167 (11.5), 144 (8.9), 129 (11.9), 107 (23.2), 106 (17.8), 103 (12.8), 91 (12.3), 79 (18.7), 75 (59.9), 73 (100.0), 66 (31.3), 65 (13.1), 45 (42.6), 43 (13.0), 41 (10.7), 39 (13.7). Anai. Calcd for C₁₅H₂₂SiO₂: C, 68.65; H, 8.45. Found: C, 68.41; H, 8.47. The structure of 4 was established unequivocally via single crystal X-ray structural analysis (vide infra).

Further elution of the chromatography column afforded a colorless oil which solidified when cooled and triturated with hexane. Recrystallization of the solid thereby obtained from EtOAc-hexane afforded isomerically pure 3 (1.54 g, 22%) as a colorless microcrystalline solid: mp 73-74 °C; IR (KBr) 2950 (s), 1720 (vs), 1440 (m), 1320 (m), 1310 (w), 1290 (m), 1250 (s), 1230 (s), 1060 cm⁻¹ (w); ¹H NMR (CDCl₃) δ 1.40 (AB, J_{AB} = 10.2 Hz, 1 H), 1.52 (AB, J_{AB} = 10.2 Hz, 1 H), 2.04 (m, 1 H), 2.30 (m, 1 H), 2.52 (m, 3 H), 2.85 (m, 5 H), 3.63 (s, 6 H), ¹³C NMR (CDCl₃) δ 28.01 (t), 37.14 (d), 39.25 (d), 41.60 (t), 42.97 (d), 44.12 (d), 46.25 (d), 44.46 (d), 48.73 (d), 50.98 (d), 51.37 (d), 51.63 (d), 173.2 (s), 173.8 (s), mass spectrum (70 eV), m/e (relative intensity) (no molecular ion), 218 (13.1), 190 (20.5), 131 (37.8), 130 (23.7), 125 (100.0), 124 (20.1), 66 (96.4), 65 (34.9). Anal. Calcd for C₁₄H₁₈O₄: C, 67.20; H, 7.20. Found: C, 67.55; H, 7.26. The fact that the C(2)-CO₂Me and C(5)-CO₂Me bonds in 3 are both endo was established unequivocally via single crystal X-ray structural analysis (vide infra).

Method B. To a suspension of Na sand (100 mg, 4.9 mg-atom) in dry benzene (50 mL) under nitrogen was added freshly cut metallic K (550 mg, 141 mg-atom), and the resulting mixture was heated to reflux to form Na-K alloy. The mixture was cooled to room temperature, and a solution of 2² (1.1 g, 4.4

mmol) in dry benzene (10 mL) was added, followed by addition of Me₃SiCl (4.0 mL, 31 mmol, excess). The resulting mixture was refluxed under nitrogen with stirring for 16 h and then allowed to cool to room temperature. The reaction mixture was filtered under nitrogen to remove unreacted Na-K alloy, and t-BuOH (5 mL) was added to the filtrate. The filtrate was concentrated in vacuo, thereby affording a yellow oil which was purified via column chromatography on silica gel by using a 1-5% EtOAc-hexane gradient elution scheme. The first fraction afforded 5 (i.e., 5a or 5b, 13 mg, 9.4%) as a colorless oil: IR (film) 2953 (vs), 2871 (sh, m), 1717 cm⁻¹ (vs). ¹H NMR (CDCl₃) δ 1.17 (s, 9 H), 1.33 (AB, J_{AB} = 10.0 Hz, 1 H), 1.46 (AB, J_{AB} = 10.0 Hz, 1 H), 1.66 (dd, J = 14.0, 4.0 Hz, 1 H), 2.33 (m, 2 H), 2.43-2.64 (m, 5 H), 3.10 (m, 1 H), 3.13 (s, 3 H), 3.61 (s, 3 H); ¹³C NMR (CDCl₃) δ 1.79 (q), 36.01 (d), 38.20 (t), 40.18 (d), 41.72 (t), 42.28 (d), 45.67 (d), 45.85 (d), 46.30 (d), 48.50 (d), 51.28 (q), 52.96 (q), 61.23 (s), 110.0 (s), 173.9 (s). Anal. Calcd for C₁₇H₂₆O₄Si: M_{Γ} 322.1600. Found (high-resolution mass spectrometry): M_{Γ} 322.1586.

Further elution of the chromatography column with 5% EtOAc-hexane afforded 3 (290 mg, 26%), whose spectral properties were identical with those reported above for the corresponding compound obtained via Method A.

Dieckmann Condensation of 3. Freshly cut metallic K (39 mg, 1.0 mg-atom) and dry benzene (20 mL) were placed under nitrogen into a flame-dried 30 mL three-neck round bottom flask that had been fitted with a reflux condenser. Dry benzene (20 mL) was added, and the mixture was heated with vigorous stirring under nitrogen until the K had become finally dispersed. The mixture then was allowed to cool to room temperature, and a solution of 3 (500 mg, 2.0 mmol) in dry benzene (5 mL) was added under nitrogen. The resulting mixture was stirred and heated slowly to 70 °C. The reaction mixture was maintained at this temperature for 3 h, during which time all of the K reacted. The reaction mixture then was cooled externally to 0 °C, and the reaction was quenched by careful dropwise addition of cold 4% HCl solution (15 mL) with constant stirring. The quenched reaction mixture was transferred into a separatory funnel, water (30 mL) was added, and the resulting mixture was extracted with ether (2 x 30 mL). The combined extracts were washed sequentially with 20% aqueous NaHCO3 solution (30 mL), brine (50 mL), and water (50 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue, a viscous yellow oil (480 mg), was purified by column chromatography on silica gel by using a 1-4% EtOAc-hexane gradient elution scheme. This procedure afforded a colorless oil (290 mg) whose ¹³C NMR spectrum indicated the presence of at least two compounds (6a and 6b). A single pure compound (either 6a or its isomer, 6b) could be obtained via flash column chromatographic purification of this mixture on silica gel by using a 1-4% EtOAc-hexane gradient elution scheme. The material thereby obtained (160 mg, 37%) was a colorless oil: bp 80 °C (0.1 mm Hg); IR (CCl₄) 2950 (s), 2870 (w), 1740 (vs), 1720 (vs), 1450 (w), 1320 (m), 1300 (m), 1270 (s), 1170 (m), 1080 cm⁻¹ (m); ¹H NMR (CDCl₃) δ 1.41 (AB, J_{AB} = 10.8 Hz, 1 H), 1.69 (AB, $J_{AB} = 10.8$ Hz, 1 H), 2.51 (br s, 2 H), 2.59 (m, 2 H), 2.88 (m, 4 H), 3.20 (m, 1 H), 3.67 (s, 3 H); ¹³C NMR (CDCl₃) δ 38.12 (d), 40.72 (d), 42.54 (t), 43.82 (t), 44.08 (d), 46.46 (d), 46.59 (f), 50.86 (d), 52.10 (d), 56.81 (d), 61.05 (s), 171.1 (s), 211.9 (s); mass spectrum (70 eV), m/e (relative intensity) 218 (molecular ion, 16.7), 190 (21.8), 131 (32.4), 130 (22.5), 125 (83.9), 124 (17.0), 91 (18.3), 66 (100.0), 39 (32.9). Anal. Calcd for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.34; H, 6.30.

Pentacyclo $[5,4,0,0^{2},5,0^{3},1^{0},0^{4},8]$ undecane-10-carboxylic Acid (7a). To a 50 mL round bottom flask equipped with a reflux condenser were added diethylene glycol (5 mL) and KOH pellets (340 mg, 6.0 mmol). The resulting mixture was heated with stirring until all of the KOH had dissolved. The resulting solution was heated to 80 °C. To this hot solution were added sequentially (i) a mixture of 6a and 6b (440 mg, 2.0 mmol) and (ii) hydrazine (1.0 g, 31 mmol). The temperature of the reaction mixture was increased to 100-110 °C, and heating was continued at this temperature with stirring for 5 h. The reaction flask was fitted with a Dean-Stark tube, and water was removed from the reaction mixture by azeotropic distillation during 3 h. The Dean-Stark trap then was removed, and the temperature of the reaction mixture was increased to 200-210 °C. The reaction mixture was heated at this temperature with stirring for 15 h and then was allowed to cool to room temperature. Water (10 mL) was added with stirring, the resulting mixture was cooled externally to 0°C, and the pH of the cooled mixture was adjusted to 5-6 via dropwise addition of 3% aqueous HCl (ca. 5 mL). The resulting mixture was trnasferred into a separatory funnel. Water (20 mL) was added, and the resulting mixture was extracted with ether (2 x 30 mL). The combined organic layers were dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue, a viscous yellow oil (360 mg) was purified via column chromatography on silica gel by using 4% EtOAc-hexane as eluent. A colorless solid was thereby obtained. Recrystallization of this material from hexane afforded pure 7b (240 mg, 63%) as a colorless microcrystalline solid: mp 138-139 °C; IR (KBr) 2950 (s), 2870 (m), 1680 (vs), 1310 (m), 1280 cm⁻¹ (m), ¹H NMR (CDCl₃) δ 1.42 (m, 2 H), 1.87 [d(AB), J = 12.0, 4.0 Hz, 2 H], 2.10 (m, 3 H), 2.47 (m, 3 H), 2.72 (m, 2 H), 2.88 (m, 1 H), 11.40 (very broad, 1 H); ¹³C NMR (CDCl₃) δ 34.30 (d), 41.52 (t), 42.08 (t), 42.46 (d), 47.02 (d), 47.77 (d), 50.61 (d), 54.21 (s), 184.1 (s), mass spectrum (70 eV), m/e (relative intensity) 190 (molecular ion, 29.1), 145 (16.4), 105 (93.7), 91 (21.9), 80 (74.0), 79 (100), 78 (20.8), 77 (49.4), 66 (32.1), 65 (20.7), 51 (21.3), 45 (20.2), 41 (22.2), 39 (45.5). Anal. Calcd for C₁₂H₁₄O₂: C, 75.76; H, 7.52. Found: C, 75.76; H, 7.42. The structure of 7b was established unequivocally via single crystal X-ray structural analysis (vide infra).

X-ray Crystal Structures of 3, 4, and 7b. All X-ray data were collected on a R3M/ μ update of a Nicolet P2₁ diffractometer by using the ω -scan mode with variable scan speed and monochromated Mo K α radiation. Crystals of 3 and 4 proved to be of very poor quality (broad, multiple peaks were obtained). X-ray data obtained for 3 and 4 provided molecular identification but not suitable refinement.

X-ray Data for 3. Space group $P2_1/c$, a = 11.379 (5), b = 9.795 (5), c = 11.393 (6) Å, b = 115.45 (8) °.

X-ray Data for 4. Space group P1, a = 6.465 (3), b = 9.253 (7), c = 12.971 (6) Å, a = 101.93 (5), b = 101.58 (4), g = 108.85 (4) °, V = 688 (1) Å³, $d_{calc} = 1.267$ g-cm⁻³.

X-ray data for 7b. Space group P2₁/n, a = 6.389 (2), b = 11.390 (5), c = 13.250 (4) A, b = 101.94 (2) °. and V = 943.4 (5) Å³ from a least squares refinement of 25 reflections; Z = 4; d_{calcd} = 1.339 g-cm⁻³, and μ = 0.84 cm⁻¹. A total of 2162 independent reflections were collected, 1511 of which displayed I > 3 σ (I). The structure was solved by direct methods, and the model was refined to R = 0.075 with 183 parameters and S = 2.03, (Δ / σ)_{max} = 0.007, and ρ _{max,min} = 0.029, -0.27 eÅ⁻³.

Acknowledgment. We thank the Robert A. Welch Foundation (Grant B-963 to A. P. M., P-074 to W. H. W.), the Office of Naval Research (Grant N00014-92-J-1362 to A. P. M.), and the Texas Christian University Faculty Research Committee for financial support of this study.

References and Footnotes

- 1. (a) Thiele, J. Chem. Ber. 1900, 33, 666. (b) Thiele, J. Ibid. 1901, 34, 68.
- 2. Dunn, G. L.; Donohue, J. K. Tetrahedron Lett. 1968, 3485.
- 3. See: Minter, D. E.; Marchand, A. P.; Lu, S.-P. Magn. Reson. Chem. 1990, 28, 623 and references cited therein.
- 4. For example, 1a and 1b have been used as starting materials to synthesize triquinacene and several triquinacene derivatives. See: (a) Deslongchamps, P.; Cheriyan, U. O.; Lambert, Y.; Mercier, J.-C.; Ruest, L.; Russo, R.; Soucy, P. Can J. Chem. 1978, 56, 1687. (b) Paquette, L. A.; Kearney, F. R.; Drake, A. F.; Mason, S. F. J. Am. Chem. Soc. 1981, 103, 5064.
- 5. Marchand, A. P. Chem. Rev. 1989, 89, 1011.
- 6. Mehta, G.; Rao, K. S.; Marchand, A. P.; Kaya, R. J. Org. Chem. 1984, 49, 3848.
- 7. Bloomfield, J. J.; Owsley, D. C.; Nelke, J. M. Org. React. 1976, 23, 259.
- 8. Huang-Minlon, J. Am. Chem. Soc. 1949, 73, 1973.
- 9. Structure drawings of 3, 4, and 7b, and tables of atomic coordinates and isotropic thermal parameters, bond lengths, bond angles, anisotropic thermal parameters, H-atom coordinates, and isotropic thermal parameters for 7b (8 pages) are available upon request from the Director of the Cambridge Crystalographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CV2 1EW, U. K. Requests should be accompanied by the full literature citation for this article.